On the Continuum Limit of a Discrete Inverse Spectral Problem on Optimal Finite Difference Grids
نویسندگان
چکیده
We consider finite difference approximations of solutions of inverse Sturm-Liouville problems in bounded intervals. Using three-point finite difference schemes, we discretize the equations on so-called optimal grids constructed as follows: For a staggered grid with 2k points, we ask that the finite difference operator (a k ×k Jacobi matrix) and the Sturm-Liouville differential operator share the k lowest eigenvalues and the values of the orthonormal eigenfunctions at one end of the interval. This requirement determines uniquely the entries in the Jacobi matrix, which are grid cell averages of the coefficients in the continuum problem. If these coefficients are known, we can find the grid, which we call optimal because it gives, by design, a finite difference operator with a prescribed spectral measure. We focus attention on the inverse problem, where neither the coefficients nor the grid are known. A key question in inversion is how to parametrize the coefficients, i.e., how to choose the grid. It is clear that, to be successful, this grid must be close to the optimal one, which is unknown. Fortunately, as we show here, the grid dependence on the unknown coefficients is weak, so the inversion can be done on a precomputed grid for an a priori guess of the unknown coefficients. This observation leads to a simple yet efficient inversion algorithm, which gives coefficients that converge pointwise to the true solution as the number k of data points tends to infinity. The cornerstone of our convergence proof is showing that optimal grids provide an implicit, natural regularization of the inverse problem, by giving reconstructions with uniformly bounded total variation. The analysis is based on a novel, explicit perturbation analysis of Lanczos recursions and on a discrete Gel′fand-Levitan formulation. c © 2004 Wiley Periodicals, Inc.
منابع مشابه
Optimal finite difference grids for direct and inverse Sturm–Liouville problems
We study finite difference approximations of solutions of direct and inverse Sturm–Liouville problems, in a finite or infinite interval on the real line. The discretization is done on optimal grids, with a three-point finite difference stencil. The optimal location of the grid points is calculated via a rational approximation of the Neumann-to-Dirichletmap and the latter converges exponentially...
متن کاملFree and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method
In the present study, a spectral finite element method is developed for free and forced transverse vibration of Levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. Levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. In the first step, the governing out-of-plane differential equations are tr...
متن کاملحل عددی معادله جریان یک بعدی آب در خاک با استفاده از روش عملگرهای مرجع
In this paper, a numerical solution is presented for one-dimensional unsaturated flows in the subsurface. Water flow in the subsurface, however, is highly nonlinear and in most cases, exact analytical solutions are impossible. The method of reference-operators has been used to formulate a discrete model of the continuum physical system. Many of the standard finite difference methods and also th...
متن کاملحل عددی معادله جریان یک بعدی آب در خاک با استفاده از روش عملگرهای مرجع
In this paper, a numerical solution is presented for one-dimensional unsaturated flows in the subsurface. Water flow in the subsurface, however, is highly nonlinear and in most cases, exact analytical solutions are impossible. The method of reference-operators has been used to formulate a discrete model of the continuum physical system. Many of the standard finite difference methods and also th...
متن کاملInverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential
In the present work, under some di¤erentiability conditions on the potential functions , we rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...
متن کامل